Global and Fixed-Terminal Cuts in Digraphs

نویسندگان

  • Kristóf Bérczi
  • Karthekeyan Chandrasekaran
  • Tamás Király
  • Euiwoong Lee
  • Chao Xu
چکیده

The computational complexity of multicut-like problems may vary significantly depending on whether the terminals are fixed or not. In this work we present a comprehensive study of this phenomenon in two types of cut problems in directed graphs: double cut and bicut. 1. Fixed-terminal edge-weighted double cut is known to be solvable efficiently. We show that fixed-terminal node-weighted double cut cannot be approximated to a factor smaller than 2 under the Unique Games Conjecture (UGC), and we also give a 2approximation algorithm. For the global version of the problem, we prove an inapproximability bound of 3/2 under UGC. 2. Fixed-terminal edge-weighted bicut is known to have an approximability factor of 2 that is tight under UGC. We show that the global edge-weighted bicut is approximable to a factor strictly better than 2, and that the global node-weighted bicut cannot be approximated to a factor smaller than 3/2 under UGC. 3. In relation to these investigations, we also prove two results on undirected graphs which are of independent interest. First, we show NP-completeness and a tight inapproximability bound of 4/3 for the node-weighted 3-cut problem under UGC. Second, we show that for constant k, there exists an efficient algorithm to solve the minimum {s, t}-separating k-cut problem. Our techniques for the algorithms are combinatorial, based on LPs and based on the enumeration of approximate min-cuts. Our hardness results are based on combinatorial reductions and integrality gap instances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions

In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.

متن کامل

The power digraphs of safe primes

A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...

متن کامل

Maximum directed cuts in acyclic digraphs

It is easily shown that every digraph with m edges has a directed cut of size at least m/4, and that 1/4 cannot be replaced by any larger constant. We investigate the size of a largest directed cut in acyclic digraphs, and prove a number of related results concerning cuts in digraphs and acyclic digraphs.

متن کامل

More skew-equienergetic digraphs

Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this  paper, we give some new methods to construct new skew-equienergetic digraphs.

متن کامل

Covering the edges of digraphs in D(3, 3) and D(4, 4) with directed cuts

For integers k, l ≥ 0, let D(k, l) denote the family of digraphs in which every vertex has either indegree at most k or outdegree at most l. In this paper we prove that the edges of every digraph in D(3, 3) and D(4, 4) can be covered by at most five directed cuts, and present an example in D(3, 3) which shows that this result is best possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017